Normalization constant of a planar waveNormalizing a set of eigenfunctions with different domainsUsing the Normalization Condition with WavefunctionImaginary Eigenvalue Of A Hermitian OperatorBox normalizationNormalization of time-independent Schroedinger equation in Spherical CoordinatesCompute the Momentum of the Wave FunctionWhy is the integral of $(nablapsi)^2$ the same as the integral of $(nabla|psi|)^2$?How to find the actual state vector in Quantum Mechanics?Impossible to decompose EM plane wave in spherical waves? (Normalization mismatch)

How can God warn people of the upcoming rapture without disrupting society?

What should I call bands of armed men in the Middle Ages?

How to divide item stack in MC PE?

If a digital camera can be "hacked" in the ransomware sense, how best to protect it?

What ability do tools use?

How can Radagast come across Gandalf and Thorin's company?

What is this "Table of astronomy" about?

On the Rømer experiments and the speed of light

Is there a standardised way to check fake news?

Heat equation: Squiggly lines

When does Tiana, Ship's Caretaker check card type?

Redis Cache Shared Session Configuration

Laptop screen is black after restart

How far did Gandalf and the Balrog drop from the bridge in Moria?

Are employers legally allowed to pay employees in goods and services equal to or greater than the minimum wage?

Simplification of numbers

0xF1 opcode-prefix on i80286

How to take the beginning and end parts of a list with simpler syntax?

How do some PhD students get 10+ papers? Is that what I need for landing good faculty position?

Why are Tucker and Malcolm not dead?

Is it okay for a ticket seller in the USA to refuse to give you your change, keep it for themselves and claim it's a tip?

PhD advisor lost funding, need advice

Can sampling rate be a floating point number?

Why aren't rainbows blurred-out into nothing after they are produced?



Normalization constant of a planar wave


Normalizing a set of eigenfunctions with different domainsUsing the Normalization Condition with WavefunctionImaginary Eigenvalue Of A Hermitian OperatorBox normalizationNormalization of time-independent Schroedinger equation in Spherical CoordinatesCompute the Momentum of the Wave FunctionWhy is the integral of $(nablapsi)^2$ the same as the integral of $(nabla|psi|)^2$?How to find the actual state vector in Quantum Mechanics?Impossible to decompose EM plane wave in spherical waves? (Normalization mismatch)






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


As we know for the plane waves ( $ae^i k x+b e^-i k x$), the normalization constant can be easily obtained from the integral $int^x_2_x_1psi^*psi dx=1$ by the relation $|a|^2+|b|^2=1$. But what happens if the parameter $k$ is imaginary, i.e. $k=i kappa$ where $kappa$ is real. Do we have the same relation for the normalization?










share|cite|improve this question











$endgroup$













  • $begingroup$
    The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
    $endgroup$
    – Baran
    3 hours ago











  • $begingroup$
    boundary conditions have been included in the functions f and g in the link above
    $endgroup$
    – Baran
    3 hours ago

















3












$begingroup$


As we know for the plane waves ( $ae^i k x+b e^-i k x$), the normalization constant can be easily obtained from the integral $int^x_2_x_1psi^*psi dx=1$ by the relation $|a|^2+|b|^2=1$. But what happens if the parameter $k$ is imaginary, i.e. $k=i kappa$ where $kappa$ is real. Do we have the same relation for the normalization?










share|cite|improve this question











$endgroup$













  • $begingroup$
    The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
    $endgroup$
    – Baran
    3 hours ago











  • $begingroup$
    boundary conditions have been included in the functions f and g in the link above
    $endgroup$
    – Baran
    3 hours ago













3












3








3





$begingroup$


As we know for the plane waves ( $ae^i k x+b e^-i k x$), the normalization constant can be easily obtained from the integral $int^x_2_x_1psi^*psi dx=1$ by the relation $|a|^2+|b|^2=1$. But what happens if the parameter $k$ is imaginary, i.e. $k=i kappa$ where $kappa$ is real. Do we have the same relation for the normalization?










share|cite|improve this question











$endgroup$




As we know for the plane waves ( $ae^i k x+b e^-i k x$), the normalization constant can be easily obtained from the integral $int^x_2_x_1psi^*psi dx=1$ by the relation $|a|^2+|b|^2=1$. But what happens if the parameter $k$ is imaginary, i.e. $k=i kappa$ where $kappa$ is real. Do we have the same relation for the normalization?







quantum-mechanics homework-and-exercises hilbert-space wavefunction schroedinger-equation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 14 hours ago









Qmechanic

112k13 gold badges218 silver badges1327 bronze badges




112k13 gold badges218 silver badges1327 bronze badges










asked 14 hours ago









BaranBaran

365 bronze badges




365 bronze badges














  • $begingroup$
    The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
    $endgroup$
    – Baran
    3 hours ago











  • $begingroup$
    boundary conditions have been included in the functions f and g in the link above
    $endgroup$
    – Baran
    3 hours ago
















  • $begingroup$
    The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
    $endgroup$
    – dmckee
    4 hours ago










  • $begingroup$
    Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
    $endgroup$
    – Baran
    3 hours ago











  • $begingroup$
    boundary conditions have been included in the functions f and g in the link above
    $endgroup$
    – Baran
    3 hours ago















$begingroup$
The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
$endgroup$
– dmckee
4 hours ago




$begingroup$
The question as posted is incomplete. In the question body you talk about plane waves without qualifiers. Then you claim that they can be normalized and exhibit the normalization over a restricted (but apparently arbitrary) range, but don't tell us what the boundary conditions are to be. In a comment on one answer you specify a range, but still don't specify the boundary conditions.
$endgroup$
– dmckee
4 hours ago












$begingroup$
I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
$endgroup$
– dmckee
4 hours ago




$begingroup$
I know that sounds unreasonably picky, but learning to specify your question s will help you at least two ways. First by helping you to notice what features of the theory are mathematically important, and secondly by teaching you to notice important things specified in problem problems (both prompts provided by teachers and in problems that come up naturally).
$endgroup$
– dmckee
4 hours ago












$begingroup$
Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
$endgroup$
– Baran
3 hours ago





$begingroup$
Thanks, dmckee. The complete question is here: physics.stackexchange.com/questions/496440/…
$endgroup$
– Baran
3 hours ago













$begingroup$
boundary conditions have been included in the functions f and g in the link above
$endgroup$
– Baran
3 hours ago




$begingroup$
boundary conditions have been included in the functions f and g in the link above
$endgroup$
– Baran
3 hours ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

Plane waves can't be normalised, because they don't represent physically realisable states. It doesn't make sense to normalise a function like $ psi = ae^ikx + be^-ikx $ over the boundary $(x_1, x_2)$ unless the particle is bounded, in which case the wavefunction will have a different solution. Another way to think about this: "There's no such thing as a free particle with a definite energy." See Griffiths intro to QM section 2.4






share|cite|improve this answer








New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
    $endgroup$
    – Baran
    13 hours ago



















5












$begingroup$

Using your parameterization, the wave is $ae^-kappa x+be^kappa x$. Note that this particular wavefunction blows up at $x=+infty,-infty$; so that it cannot be normalized unless we impose $a=0$ for $x<0$ and $b=0$ for $x>0$. If you do this, you can simply carry out an integration to find out the relation between $a$ and $b$ that will normalize the wave.



Remember that $k=sqrt2m(E-V)/hbar$, so that it will be imaginary in regions where $E<V$. In particular consider a wave incident in $x<0$ on a step potential barrier of height $V_0$ for all $x>0$. If $E<V_0$, it will have the form $ae^-kappa x$ at $x>0$, so that the wave actually exists inside the barrier even though the incident energy was less than the barrier height. This is how tunneling happens.






share|cite|improve this answer










New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
    $endgroup$
    – Baran
    14 hours ago







  • 2




    $begingroup$
    Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
    $endgroup$
    – Mani Jha
    13 hours ago














Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f496385%2fnormalization-constant-of-a-planar-wave%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Plane waves can't be normalised, because they don't represent physically realisable states. It doesn't make sense to normalise a function like $ psi = ae^ikx + be^-ikx $ over the boundary $(x_1, x_2)$ unless the particle is bounded, in which case the wavefunction will have a different solution. Another way to think about this: "There's no such thing as a free particle with a definite energy." See Griffiths intro to QM section 2.4






share|cite|improve this answer








New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
    $endgroup$
    – Baran
    13 hours ago
















5












$begingroup$

Plane waves can't be normalised, because they don't represent physically realisable states. It doesn't make sense to normalise a function like $ psi = ae^ikx + be^-ikx $ over the boundary $(x_1, x_2)$ unless the particle is bounded, in which case the wavefunction will have a different solution. Another way to think about this: "There's no such thing as a free particle with a definite energy." See Griffiths intro to QM section 2.4






share|cite|improve this answer








New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
    $endgroup$
    – Baran
    13 hours ago














5












5








5





$begingroup$

Plane waves can't be normalised, because they don't represent physically realisable states. It doesn't make sense to normalise a function like $ psi = ae^ikx + be^-ikx $ over the boundary $(x_1, x_2)$ unless the particle is bounded, in which case the wavefunction will have a different solution. Another way to think about this: "There's no such thing as a free particle with a definite energy." See Griffiths intro to QM section 2.4






share|cite|improve this answer








New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$



Plane waves can't be normalised, because they don't represent physically realisable states. It doesn't make sense to normalise a function like $ psi = ae^ikx + be^-ikx $ over the boundary $(x_1, x_2)$ unless the particle is bounded, in which case the wavefunction will have a different solution. Another way to think about this: "There's no such thing as a free particle with a definite energy." See Griffiths intro to QM section 2.4







share|cite|improve this answer








New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this answer



share|cite|improve this answer






New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








answered 14 hours ago









VisipiVisipi

513 bronze badges




513 bronze badges




New contributor



Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




Visipi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • 1




    $begingroup$
    Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
    $endgroup$
    – Baran
    13 hours ago













  • 1




    $begingroup$
    Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
    $endgroup$
    – Baran
    13 hours ago








1




1




$begingroup$
Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
$endgroup$
– Baran
13 hours ago





$begingroup$
Thanks, yes, you are right. Plane wave can be normalized through Dirac delta function. But my question is how can I find the normalization constant $a$ for the wave $a(e^-kappa x+f(alpha) e^kappa x)$ where $kappa$ is real and $xin[0,fracpi2]$. This is a special problem related to negative energies. So, can I use the integral $int^pi/2_0psi^*psi dx=1$ to calculate $a$?
$endgroup$
– Baran
13 hours ago














5












$begingroup$

Using your parameterization, the wave is $ae^-kappa x+be^kappa x$. Note that this particular wavefunction blows up at $x=+infty,-infty$; so that it cannot be normalized unless we impose $a=0$ for $x<0$ and $b=0$ for $x>0$. If you do this, you can simply carry out an integration to find out the relation between $a$ and $b$ that will normalize the wave.



Remember that $k=sqrt2m(E-V)/hbar$, so that it will be imaginary in regions where $E<V$. In particular consider a wave incident in $x<0$ on a step potential barrier of height $V_0$ for all $x>0$. If $E<V_0$, it will have the form $ae^-kappa x$ at $x>0$, so that the wave actually exists inside the barrier even though the incident energy was less than the barrier height. This is how tunneling happens.






share|cite|improve this answer










New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
    $endgroup$
    – Baran
    14 hours ago







  • 2




    $begingroup$
    Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
    $endgroup$
    – Mani Jha
    13 hours ago
















5












$begingroup$

Using your parameterization, the wave is $ae^-kappa x+be^kappa x$. Note that this particular wavefunction blows up at $x=+infty,-infty$; so that it cannot be normalized unless we impose $a=0$ for $x<0$ and $b=0$ for $x>0$. If you do this, you can simply carry out an integration to find out the relation between $a$ and $b$ that will normalize the wave.



Remember that $k=sqrt2m(E-V)/hbar$, so that it will be imaginary in regions where $E<V$. In particular consider a wave incident in $x<0$ on a step potential barrier of height $V_0$ for all $x>0$. If $E<V_0$, it will have the form $ae^-kappa x$ at $x>0$, so that the wave actually exists inside the barrier even though the incident energy was less than the barrier height. This is how tunneling happens.






share|cite|improve this answer










New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 1




    $begingroup$
    Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
    $endgroup$
    – Baran
    14 hours ago







  • 2




    $begingroup$
    Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
    $endgroup$
    – Mani Jha
    13 hours ago














5












5








5





$begingroup$

Using your parameterization, the wave is $ae^-kappa x+be^kappa x$. Note that this particular wavefunction blows up at $x=+infty,-infty$; so that it cannot be normalized unless we impose $a=0$ for $x<0$ and $b=0$ for $x>0$. If you do this, you can simply carry out an integration to find out the relation between $a$ and $b$ that will normalize the wave.



Remember that $k=sqrt2m(E-V)/hbar$, so that it will be imaginary in regions where $E<V$. In particular consider a wave incident in $x<0$ on a step potential barrier of height $V_0$ for all $x>0$. If $E<V_0$, it will have the form $ae^-kappa x$ at $x>0$, so that the wave actually exists inside the barrier even though the incident energy was less than the barrier height. This is how tunneling happens.






share|cite|improve this answer










New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$



Using your parameterization, the wave is $ae^-kappa x+be^kappa x$. Note that this particular wavefunction blows up at $x=+infty,-infty$; so that it cannot be normalized unless we impose $a=0$ for $x<0$ and $b=0$ for $x>0$. If you do this, you can simply carry out an integration to find out the relation between $a$ and $b$ that will normalize the wave.



Remember that $k=sqrt2m(E-V)/hbar$, so that it will be imaginary in regions where $E<V$. In particular consider a wave incident in $x<0$ on a step potential barrier of height $V_0$ for all $x>0$. If $E<V_0$, it will have the form $ae^-kappa x$ at $x>0$, so that the wave actually exists inside the barrier even though the incident energy was less than the barrier height. This is how tunneling happens.







share|cite|improve this answer










New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this answer



share|cite|improve this answer








edited 13 hours ago





















New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








answered 14 hours ago









Mani JhaMani Jha

644 bronze badges




644 bronze badges




New contributor



Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




Mani Jha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • 1




    $begingroup$
    Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
    $endgroup$
    – Baran
    14 hours ago







  • 2




    $begingroup$
    Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
    $endgroup$
    – Mani Jha
    13 hours ago













  • 1




    $begingroup$
    Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
    $endgroup$
    – Baran
    14 hours ago







  • 2




    $begingroup$
    Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
    $endgroup$
    – Mani Jha
    13 hours ago








1




1




$begingroup$
Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
$endgroup$
– Baran
14 hours ago





$begingroup$
Thanks. But here the domain of $x$ is limited, $xin[0,pi/2]$. So, divergence is not a problem here. Also, there is a relation between the two parameters $a$ and $b$. So, we can normalize the wave by the integral $int^pi/2_0psi^*psi dx=1$. Therefore, the relation $ |a|^2+|b|^2=1$ is not the case here, right?
$endgroup$
– Baran
14 hours ago





2




2




$begingroup$
Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
$endgroup$
– Mani Jha
13 hours ago





$begingroup$
Yes, because the exponential factors no longer cancel in $psi*psi$. You should also get conditions from the continuity and differentiability of the wave at the boundaries.
$endgroup$
– Mani Jha
13 hours ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f496385%2fnormalization-constant-of-a-planar-wave%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)